bedanyadata analyst dan data scientist resources, Resume/CV/Cover letter formats, templates, examples, and writing guides, interview tips, job search resources and salary survey, company interviews - CakeResume provides professional bedanya data analyst dan data scientist resources for you.
3 Data Engineer. Data engineer bertanggung jawab untuk membangun, menguji dan memelihara arsitektur data. Tujuannya adalah untuk membangun dan mengoptimalkan sistem perusahaan yang memungkinkan bagi data analyst dan data scientist menyelesaikan pekerjaan mereka.
Mengumpulkandan Mengolah Data. Tugas utama yang dilakukan seorang data engineer adalah mengumpulkan dan mengolah data. Data tersebut terdiri dari banyak macamnya, diantaranya berupa angka, informasi, karakter, gambar, suara dan lain sebagainya. Sebuah data dapat dikatakan sebagai big data apabila data itu memiliki ragam atau kategori.
Sementaraitu, data scientist bertugas untuk mendesain dan menjahit baju dari kain. Ia andal dalam menggunting, menjahit, dan memilih kain dari data engineer sebagai bahan baku baju tertentu. Nah, lewat analogi ini, kamu tentu bisa memahami bahwa data scientist adalah orang yang bertugas mengolah data dari data engineer.
MemahamiPerbedaan Role Data Analyst dan Machine Learning Engineer. Dalam rangka membangun perangkat lunak berbasis data secara efisien, perusahaan membutuhkan spesialis berpengetahuan yang memiliki pengalaman dalam bekerja dengan data dan alat yang sesuai. Peran Machine Learning Engineer dan Data Scientist relatif baru sehingga banyak orang
PerbedaanData Analyst, Data Engineer, dan Data Scientist. 43,652 views Mar 1, 2020 Ingin menjadi Data Analyst atau Data Engineer atau Data Scientist tetapi masih belum memahami perbedaannya?
Dalamproses pengolahan data, perusahaan membutuhkan sumber daya manusia yang mampu dan menguasai beberapa metode dan tools analisis data. Saat ini ada tiga profesi yang berkaitan dengan data yaitu data scientist, data analyst, dan data engineer. Dengan peningkatan data secara eksponensial, rekrutmen pekerjaan berbasis data pun semakin meningkat.
Bacajuga : Mengenal Profesi Data Scientist. 2. Peran Lain Data Science dalam Industri Media. Sementara itu, di 20th Century Fox, para ilmuwan data telah menggunakan AI untuk menganalisis cuplikan film guna menentukan apa yang mungkin disukai penonton. Pada tahun-tahun sejak itu, peran ilmu data dalam hiburan semakin berkembang.
Terkaitdengan SDM di bidang data, ada tiga profesi yang populer di bidang ini yaitu data analyst, data engineer, dan data scientist. Meskipun ketiga profesi tersebut sama-sama berkutat di bidang data, namun ketiganya memiliki perbedaan. Berikut ini penjelasan mengenai perbedaan dari ketiganya. 1. Data Analyst
Tapi perbedaan signifikan dari keduanya adalah Data Scientist lebih menggunakan kemampuannya untuk menafsirkan data guna menyampaikan insight kepada orang lain, sedangkan Data Engineer menggunakan kemampuannya untuk membangun infrastruktur yang berkinerja tinggi (high-performance) yang diperlukan untuk membantu pekerjaan Data Scientist dan Data Analyst, yakni menyiapkan data untuk dapat ditafsirkan dan dianalisis.
WdAxofV. Profesi Data Scientist dan Data Engineer merupakan profesi yang saling beririsan dan tentunya saling berkaitan satu sama lain. Keduanya memiliki tujuan yang sama akan tetapi untuk mencapai tujuan tersebut mereka menggunakan prinsip dan cara yang berbeda. Lantas, dimana letak perbedaan antara Data Scientist VS Data Engineer ? Saat ini masih banyak orang yang bingung apa perbedaan data scientist dan data engineer, karena yang diketahui orang-orang pada umumnya adalah pekerjaan ini berkaitan dengan data yang fokus pada pengambilan wawasan berharga dari menjawab rasa kebingungan yang terkadang masih ada di benak kita, artikel ini akan merangkum 3 perbedaan paling mendasar yang dijadikan tolak ukur untuk membedakan Data Scientist VS Data Data Engineer. Yang berfokus pada penjelasan mengenai siapa itu Data Scientist dan Data Engineer, skill set dan tools apa saja yang diperlukan dari masing-masing profesi tersebut. Jadi, simak terus artikel ini sampai selesai, ya !1. Mengenal Peran Data ScientistSebelum membahas lebih lanjut, hal mendasar pertama yang menjadi tolak ukur yang membedakan profesi Data Scientist VS Data Engineer adalah memahami peran Data Scientist itu sendiri. Peran Data Scientist antara lain, melakukan Business Understanding yang meliputi penentuan masalah, objective dan brainstorming dengan tim, setelah itu melakukan Data Preprocessing yang mencakup kegiatan Data Cleaning dan Data Transform, kemudian ikut terlibat dalam perencanaan strategis dalam analisis data, melakukan analisis data dan optimasi menggunakan Machine Learning dan Deep Learning, serta berperan sebagai jembatan antara stakeholder dan customer/ juga Mengenal Profesi Data Scientist2. Mengenal Peran Data EngineerLain dengan Data Scientist, seorang Data Engineer adalah orang yang mengembangkan, membangun, menguji dan memelihara arsitektur data, seperti database dan sistem pemrosesan skala besar atau yang sering disebut Big Data. Data Engineer berperan untuk membangun algoritma untuk membantu memberikan akses yang lebih mudah ke dataset sehingga, Data Scientist dan Data Analyst mendapatkan data yang mereka butuhkan, selain itu perannya pada manajemen data mulai dari keamanan, performance hingga maintenance. Data Engineer juga berperan dalam melakukan development aplikasi analisis yang canggih berdasarkan Machine Learning dan Metode Statistika, menggunakan data untuk membuat sistem dashboard atau laporan yang berisikan visualisasi data secara otomatis untuk membantu Skillset dan Tools Data Scientist VS Data EngineerSetelah mengenal peran dari Data Scientist VS Data Engineer, hal mendasar yang membedakan kedua profesi tersebut dilihat dari skillset dan tools yang mereka butuhkan dan dapat membantu sistem workflow mereka. Berikut ini skillset sekaligus tools yang diperlukan seorang Data ScientistKemampuan programming untuk melakukan pemodelan dengan algoritma Machine Learning, Deep Learning dengan menggunakan tools seperti Python/R, pandas, dan dan linear algebraKemampuan untuk Data Profiling sebelum menentukan pemodelan yang tepat untuk dataset yang dimilikiMenguasai Database dan Metadata dengan menggunakan tools seperti MySQLVisualisasi data dengan menggunakan tools seperti ggplot2 pada R dan matplotlib pada Python atau menggunakan TableauAdapun skillset dan tools yang diperlukan seorang Data EngineerKemampuan programming untuk membuat framework, pipeline, dan mendeploy program dengan menggunakan tools seperti Python, Java, Scala beserta frameworknya seperti Flask atau Database dan Metadata dengan menggunakan tools seperti MySQL dan MongoDBPengetahuan Big Data Ecosystem dengan menggunakan tools seperti Hadoop, Spark, Hive, dan PigPengetahuan tentang proses ETL dengan menggunakan tools seperti Talend, Xplenty, Oracle Data Integrator, Pentaho, dan tentang DevOps dengan menggunakan tools seperti Slack, Docker, dan juga Yuk Kenal Role Data Scientist, Profesi Menarik Dengan Gaji Besar4. Yuk Mulai Belajar Menjadi Data Scientist Bersama DQLab!Gunakan Kode Voucher "DQTRIAL", dan simak informasi di bawah ini mendapatkan 30 Hari FREE TRIALBuat Akun Gratis dengan Signup di dan pilih menu redeem voucherRedeem voucher "DQTRIAL" dan check menu my profile untuk melihat masa subscription yang sudah akun kamu sudah terupgrade, dan kamu bisa mulai Belajar Data Science GRATIS 1 Rian TinegesEditor Annissa Widya Davita
Di era digitalisasi seperti sekarang, internet digunakan dalam berbagai aspek kehidupan. Kemudahan ini mendorong informasi lebih luas dan cepat, sehingga tidak sulit untuk menemukan ide baru. Baik itu inovasi atau strategi dalam bidang bisnis sampai industri. Teknologi juga memunculkan banyak profesi baru, contohnya di bidang data. Tahukah Anda apa perbedaan data scientist, data engineer dan data analyst? Saat ini data sangat dibutuhkan sebagai bentuk validasi dari representasi sebuah bidang. Misalnya saja pada bidang pemerintahan, pendidikan, industri dan bidang lainnya. Data ini nantinya akan dikumpulkan, diolah dan dianalisis oleh ahli di bidangnya. Biasanya ahli-ahli tersebut dikenal dengan nama data analyst, data scientist, dan data engineer. Pernahkah Anda mendengar ketiga nama profesi di atas? Biasanya profesi ini lazim ada pada start up dan perusahaan. Lalu, apa sebenarnya data analyst, data scientist, dan data engineer? Apa saja bidang keahlian diantara ketiga profesi tersebut? Seringkali dibilang mirip bagaimana perbedaan antara data analyst, data scientist, dan data engineer? Agar lebih mudah memahami ketiga profesi populer ini, sudah kami rangkum penjelasannya untuk Anda. Yuk simak selengkapnya dibawah ini! Daftar Isi1 Apa itu Data Analyst, Data Scientist, dan Data Engineer? Data Data Data engineer2 Bidang Keahlian Data Analyst, Data Scientist, dan Data Data Data Data engineer3 Perbedaan Antara Data Analyst, Data Scientist, dan Data Data Data Data engineer4 Penutup Apa itu Data Analyst, Data Scientist, dan Data Engineer? Secara umum, jika dilihat lebih mendalam ketiga ahli data ini memiliki definisi yang hampir sama yaitu sama-sama mengolah data. Namun spesifikasi dari outputnya saja yang berbeda. Sebelum masuk pada bidang keahlian, ketahui definisi dari masing-masing ahli data dari data analyst, data scientist, dan data engineer sebagai berikut Data analyst Seseorang yang bertugas untuk mengolah, menguji dan menafsirkan dari data yang sudah dikumpulkan, selanjutnya data ini akan menghasilkan visualisasi dalam bentuk yang beragam. Biasanya seorang data analyst lebih sering menggunakan bahasa pemrograman untuk memecahkan masalah yang terjadi pada sebuah bisnis. Data scientist Seseorang yang bertugas untuk menganalisis, mengatur hingga mendesain model dari data perusahaan. Bentuk data yang dianalisis biasanya data mentah dalam jumlah yang besar. Hal inilah yang membuat seorang data scientist memerlukan tools dan statisika khususnya machine learning untuk menghasilkan insight baru bagi kepentingan perusahaan. Data engineer Seseorang yang bertugas untuk mengembangkan data yang telah diolah oleh data analyst dan dianalisis data scientist. Pengembangan ini biasanya berbentuk sebuah platform yang berisi data-data perusahaan. Kemudian seorang data engineer juga merancang dan mendesain arsitektur dari database. Sama seperti sarana dan prasarana dalam wujud barang, infrastruktur data perusahaan juga harus dipelihara dengan baik. Bidang Keahlian Data Analyst, Data Scientist, dan Data Engineer Setelah Anda mengetahui definisi dari ketiga ahli data diatas, penting untuk mempelajari bidang-bidang keahlian apa saja dari data analyst, data scientist, dan data engineer. Ini penting untuk menyesuaikannya dengan tugas-tugas yang berkaitan agar lebih relevan. Berikut penjelasan ketiga ahli data tersebut yang sesuai dengan bidang keahliannya antara lain Data analyst Jika ingin menjadi data analyst Anda harus mempelajari bidang keahlian yang sesuai dengan prospek kerjanya. Ini penting agar tugas dan tanggung jawab yang diberikan oleh perusahaan terlaksana dengan baik sesuai prosedur. Bidang keahlian yang harus dimiliki seorang data analyst antara lain menguasai ilmu komputer, pengoperasian Microsoft Excel, SQL hingga Google Analytics serta memiliki pengetahuan tentang bisnis serta membuat rekap laporan data. Data scientist Selanjutnya, agar menjadi data scientist yang profesional Anda harus memahami bidang keahliannya minimal pengetahuan basic. Selain itu disiplin ilmu yang perlu dimiliki yaitu menguasai statistika,b ahasa pemrograman, memahami penggunaan Spreadsheet dan SQL, serta memiliki pengetahuan tentang machine learning dan deep learning. Data engineer Sama seperti dua ahli data di atas, seorang data engineer juga harus memiliki kemampuan bidang ahli guna membantu kinerja dalam mengolah data. Beberapa disiplin ilmu yang diperlukan yaitu menguasai SQL dan database, memiliki pengetahuan mengenai mesin, statistika, middleware hingga hardware, serta bisa menganalisis hadoop. Perbedaan Antara Data Analyst, Data Scientist, dan Data Engineer Meskipun secara garis besar, memiliki peran yang sama dalam sebuah industri maupun bisnis. Tentu ada beberapa perbedaan dalam jobdesk seorang data analyst, data scientist, dan data engineer. Untuk melihat sejauh mana perbedaannya, berikut sudah kami rangkum dibawah ini! Data analyst Perbedaan pertama dimulai dari tugas seorang data analyst yang harus mengumpulkan data berdasarkan permintaan dari perusahaan. Misalnya data dari produk baru yang akan launching bulan depan oleh perusahaan, sebelum diproses lebih lanjut penting untuk menganalisis produk tersebut terkait kelayakan serta target pasar yang sesuai dengan market. Setelah dianalisis data perusahaan akan ditafsirkan sehingga menghasilkan kesimpulan dari berbagai data-data produk. Selanjutnya agar memudahkan untuk presentase, data yang dihasilkan dikemas dalam bentuk visual. Dari segi ouputnya secara sederhana, data analyst memberikan informasi kepada perusahaan berdasarkan dari data-data yang telah dikumpulkan untuk melanjutkan produksi atau tidak. Misal data mengenai penurunan jumlah penjualan sebuah produk, kelanjutan dari produksi ini ditentukan oleh informasi yang disampaikan oleh data analyst. Data scientist Sementara itu data scientist, dilihat dari tugasnya yaitu membuat model statistik lalu menganalisis menggunakan machine learning. Kemudian sebelum data tersebut dipresentasikan kepada petinggi perusahaan, mereka lah yang membuat desain berupa visualisasi data. Ini berguna untuk memudahkan membaca grafik data yang telah selesai diolah. Bukan hanya itu saja, beberapa hal yang berhubungan dengan bisnis perusahaan baik itu produk atau strategi marketingnya menjadi bagian dari tanggung jawab seorang data scientist. Output yang dihasilkan data scientist adalah rekomendasi data product. Seperti pada platform email. Sebuah perusahaan pasti memiliki email resmi mereka, dalam hal ini antara pesan masuk,pesan keluar atau hal penting lainnya bisa masuk secara bersamaan. Ini membuat email akan lebih cepat penuh dan tidak rapi. Nah, data scientist inilah yang akan mengkategorikan mana saja yang pesan masuk,mana yang spam, mana pesan yang sebaiknya dihapus. Data engineer Terakhir perbedaan dari kedua ahli data diatas dengan data engineer dari segi tugasnya adalah memberikan solusi terhadap sistem data perusahaan. Biasanya ini meliputi tentang pembuatan algoritma data, penyimpanan sampai visualisasinya. Bukan hanya itu saja, untuk memastikan sistem perusahaan bekerja secara optimal khususnya seluruh data pipeline adalah tugas dari seorang data engineer. Secara sederhana, tujuan dari data engineer adalah membuat software yang akan digunakan oleh data analyst dan data scientist. Ini sebagai penunjang bagi kedua ahli tersebut untuk menyelesaikan pekerjaan mereka. Ketiga profesi ini memiliki keterkaitan satu sama lain, dimana data analyst tidak akan bisa bekerja jika tidak ada data engineer begitupun data scientist. Pekerjaan para ahli data tersebut akan maksimal jika ketiganya saling mendukung. Sementara itu, memasarkan produk saat ini cenderung menggunakan strategi marketing lewat platform media sosial karena dinilai lebih efektif. Ini tentu berdampak pada output dari seorang data engineer. Misalnya penggunaan instagram, disini postingan harian dari produk akan masuk ke dalam gudang data yang banyak tersebar hingga di beberapa bagian klaster. Data engineer lah yang bekerja untuk menarik postingan harian pada instagram tersebut. Penutup Itulah beberapa perbedaan antara data analyst,data scientist dan data engineer. Penjelasan diatas bermanfaat bagi Anda yang masih bingung membedakan antara ketiga ahli data tersebut. Jika Anda tertarik ingin menjadi salah satu ahli data diatas, pastikan untuk mulai mempelajari ilmu tentang bahasa pemrograman, ilmu statistika bahkan ilmu komputer. Ini berguna sebagai landasan dasar Anda untuk terjun dalam bidang pengolahan hingga analisis data. Meskipun harus menghadapi berbagai macam real data dalam jumlah yang besar setiap hari, belum terlambat untuk mencoba memahaminya. Anda bisa belajar secara otodidak dengan bantuan buku panduan, ikut bootcamp sampai menonton channel video di sosial media. Ketahui juga output yang dihasilkan bagi perusahaan untuk Anda yang ingin bergabung dalam profesi ini ya! Untuk terjun ke bidang baru, Anda tentunya butuh portofolio yang mumpuni. Buatlah sebuah website portofolio online yang menjelaskan proyek-proyek Anda agar lebih mudah ditemukan oleh recruiter. Anda bisa menggunakan WordPress Hosting dari IDCloudHost yang mudah dan cepat digunakan, serta cocok untuk Anda yang ingin membuat portofolio!
Perbedaan Data Analyst VS Data Scientist VS Data Engineer Photo by Marten Bjork on Unsplash Data Analyst, Data Scientist dan Data Engineer merupakan profesi di bidang data yang sedang populer dicari oleh banyak perusahaan. Salah satu alasannya adalah karena data kini menjadi faktor penting untuk mendukung perusahaan di era digitalisasi untuk bisa bersaing dan berkembang. Ketiga profesi ini berperan penting untuk perusahaan karena tanggung jawab dan tugasnya sangat erat dengan perkembangan teknologi dan pengolahan berbagai data. Tak heran ketiganya memiliki prospek karier yang menjanjikan dan banyak orang tertarik untuk mengetahui lebih lanjut mengenai perbedaan Data Analyst VS Data Scientist VS Data Engineer. Umumnya, perusahaan menggunakan data untuk menganalisis dan memprediksi masa depan untuk memudahkan proses keputusan bisnis, oleh karena itu sumber daya manusia terkait data menjadi bagian penting dari setiap perusahaan, terlepas dari industri, jenis, dan ukurannya. Setidaknya, perusahaan membutuhkan tiga profesi yaitu data analyst vs data scientist vs data engineer yang berperan untuk mengelola berbagai data perusahaan. Meskipun ketiga profesi tersebut sama-sama berkutat di bidang data, namun faktanya ketiganya memiliki banyak perbedaan. Jika kamu tertarik untuk memulai karier di bidang data maka kamu harus mengetahui apa saja perbedaan data analyst vs data scientist vs data engineer, penasaran? Simak terus! Baca juga Apa Itu Data Engineering? Pahami Melalui Konsep Lego Definisi Perbedaan Data Analyst VS Data Scientist VS Data Engineer Photo by Helena Lopes on Unsplash Sebelum mengetahui perbedaan ketiga profesi di bidang data, kamu juga harus memahami terlebih dahulu definisi dari data analyst, data science, dan data engineering. Berikut perbedaanya Data Analysis Data analysis adalah proses penerapan teknik statistik secara sistematis untuk menggambarkan, mengilustrasikan, memadatkan dan mengevaluasi data. Sumber The Office of Research Integrity. Proses tersebut dilakukan untuk mengubah data menjadi informasi yang bermanfaat dan ditarik kesimpulannya untuk membantu perusahaan dalam menyelesaikan suatu permasalahan. Biasanya, perusahaan akan menganalisis data konsumen secara real-time yang lebih akurat sehingga bermanfaat untuk membantu perusahaan mengambil keputusan. Data Science Ilmu yang menggabungkan dan memanfaatkan statistika, komputer, dan domain aplikasi yang cara kerjanya dengan memproses data baik itu data terstruktur maupun data tidak terstruktur untuk mendapatkan informasi yang dibutuhkan perusahaan. Data science juga merupakan rangkaian pengolahan data untuk mengekstrak informasi berharga dari data untuk pengambilan keputusan bisnis, strategis, dan penggunaan lainnya Sumber TechTarget. Data Engineering Berbeda halnya dari data analysis dan data science, data engineering merupakan proses membuat, mendesain, menyimpan, dan memproses data secara real-time untuk membuat data mentah bisa digunakan oleh data analyst dan data scientist Sumber Precisely. Data engineering juga merupakan proses untuk membangun saluran atau alur kerja untuk memastikan proses pergerakan dari satu data ke data yang lainnya berjalan dengan efektif dan efisien. Tugas dan Tanggung Jawab Perbedaan Data Analyst VS Data Scientist VS Data Engineer Photo by Mikey Harris on Unsplash Perbedaan data analyst vs data scientist vs data engineer pertama bisa dilihat dari cakupan tugas dan tanggung jawabnya, diantaranya Data Analyst Data analyst bertugas untuk riset, mengumpulkan, dan menggunakan data untuk mendapatkan suatu kesimpulan sesuai dengan project yang sedang dikerjakan. Umumnya, tanggung jawab seorang data analyst di suatu perusahaan meliputi analisis statistik dan penafsirannya, pemeliharaan dan akuisisi data, hingga merepresentasi data melalui laporan dan visualisasi data. Data Scientist Seorang data scientist bertugas untuk mengumpulkan data yang besar dan mengolah data tersebut menjadi insight baru yang berguna untuk proses pengambilan keputusan. Tanggung jawabnya meliputi analisis, pengoptimalan, dan kinerja dari machine learning, deep learning, dan statistical model. Data Engineer Tugas data engineer adalah mengembangkan platform untuk data-data yang akan diolah dan diterjemahkan oleh data analyst dan data scientist. Cakupan tanggung jawabnya meliputi develop machine learning, mengidentifikasi solusi serta perangkat untuk mengoptimalkan akuisisi data dan kinerja seluruh data pipeline. Baca juga Rekomendasi Job Portal untuk Cari Lowongan Data Science Skills Perbedaan Data Analyst VS Data Scientist VS Data Engineer Photo by Wouter on Unsplash Setelah tahu perbedaan definisi, tugas, dan tanggung jawabnya, kamu juga harus mengetahui perbedaan skills yang dibutuhkan, diantaranya Data Analyst Hard-skills yang dibutuhkan seorang data analyst adalah Spreadsheet, scripting, SQL, data warehouse, kemampuan membuat laporan, visualisasi data, Google Analytics, hingga bahasa pemrograman statistik seperti R dan Python. Data Scientist Hard-skills yang dibutuhkan seorang data analyst adalah Spreadsheet, SQL, machine learning, deep learning, data mining, optimasi data, hingga bahasa pemrograman tingkat lanjut seperti C, C++, Java, dll. Data Engineer Hard-skills yang dibutuhkan seorang data analyst adalah arsitektur data dan pipelining, machine learning, data warehouse, SQL dan database tingkat lanjut, pemrograman tingkat lanjut, Hadoop-based analytics, hingga kemampuan scripting dan visualisasi data. Output Perbedaan Data Analyst VS Data Scientist VS Data Engineer Photo by Surface on Unsplash Perbedaan lain dari data analyst vs data scientist vs data engineer adalah output yang dihasilkan. Biasanya, data analyst menghasilkan output hasil identifikasi berupa informasi yang bermanfaat utamanya bagi pihak perusahaan, sedangkan data scientist menghasilkan output berupa data product seperti mesin rekomendasi yang ditampilkan Youtube, terakhir output yang dihasilkan oleh data engineer biasanya berupa data flow, penyimpanan, dan retrieval system. Prospek Karier Perbedaan Data Analyst VS Data Scientist VS Data Engineer Photo by Firos nv on Unsplash Berbicara mengenai prospek karier, ketiga profesi ini sama-sama memiliki prospek dan jenjang karier yang menjanjikan. Namun, rata-rata gaji ketiga profesi ini memiliki perbedaan. Rata-rata gaji data analyst adalah 10-28 juta/bulan Sumber Glassdoor, data scientist 16-27 juta/bulan Sumber Glassdoor, dan data engineer 10-24 juta/bulan Sumber Glassdoor. Baca juga Apa Itu Data Mengenal Jenis-Jenis Data di Era Digital Rekomendasi Pelatihan Perbedaan Data Analyst VS Data Scientist VS Data Engineer Photo by Surface on Unsplash Jika tertarik untuk memulai karier sebagai data analyst, data scientist, atau data engineer, kamu bisa belajar bersama Bootcamp Digital Skola, bimbingan tutor expert, kurikulum berbasis industri, portofolio, professional branding, comprehensive learning module, dan fasilitas lengkap lainnya akan membuka jalan karier kamu berkarier di bidang data. Penasaran?